On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs
نویسندگان
چکیده
Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist-antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control.
منابع مشابه
Investigation of Muscle Synergies Using Four Different Methods of Synergy Extraction While Running on a Treadmill in Beginner Runners
Introduction: The study of muscle synergy is a new way to evaluate the functioning of the human body's control system. Different mathematical methods are used to extract muscle synergies from electromyographic data, and this factor can cause different outputs in muscle synergies. Therefore, the aim of this study was to investigate muscle synergies using four different synergy extraction methods...
متن کاملEffects of Concentric and Eccentric Strength Training on Electromyography Activity of the Knee Agonist –Antagonist Muscle
Purpose: An appropriate activity of the knee agonist -antagonist muscles is important to resist against abnormal abduction-adduction moments loads around knee joint and reduce the risk of knee injuries. Exercise training has been commonly used as an intervention to improve neuromuscular activity within the synergic and/or agonist-antagonist muscles. However, maximizing the effectiveness of exer...
متن کاملStrength ratio between agonist and antagonist muscles and range of motion of the shoulder in female volleyball players and non-athletes
Background and Purpose: Frequent throwing Movements can change its muscular strength and range of motion balance shoulder athletes compared to non-athletes. The purpose of this study was to the comparison of strength ratio between agonist and antagonist muscles and range of motion of the shoulder in volleyball players and non-athletes. Research Method: Thirty female volleyball players (mean age...
متن کاملComparison of Agonist vs. Antagonist Stimulation on Triceps Surae Spasticity in Spinal Cord
Objectives: One of the most common and disabling complications that affects individuals with spinal cord injury is spasticity. The purpose of this study is to compare the effect of agonist and antagonist electrical stimulations on triceps surae muscle spasticity in patients with spinal cord injury. Methods: A total of 30 subjects with spinal cord injury were considered for the study. They were...
متن کاملتأثیر خستگی بر الگوی فعالیت الکترومایوگرافی و هم انقباضی عضلات اندام تحتانی طی دویدن
Background: Muscle fatigue can change the muscle activation pattern during running and causes some disorders in running biomechanics. The aim of present study was to determine the effect of muscle fatigue on electromyographic activation pattern and co-contractions of lower extremity muscles during running. Methods: Fourteen males (age: 23.76±2.14 years, weight: 78.45±2.54 kg, hei...
متن کامل